RDF REFUSE DERIVED FUEL

Around of 1000 t / dia (MSW)

Production ~300 ton per day RDF

Renewable Energy Source "BRH"

Residual Municipal Solid Waste (MSW)

Residual Municipal Solid Waste (MSW) is waste that is household or household like. It comprises household waste collected by local authorities some commercial and industrial wastes e.g. from offices, schools, shops etc. that may be collected by the local authority or a commercial company.

Lay-out process (Schematic)

WASTE PROCESSING LINE

Project Plan - Modules to 300 ton per day

Pilot plant picture

Pilot plant picture

WASTE PROCESSING LINE

Packing Press

Waste2Energy

Store

Industrial plant 300 ton per day

WASTE PROCESSING LINE

PCI 4.000 kcal/kg After store the RDF go to gasification process

BASIC PROJECT OF PLANT

STAGE 01 - ENGINEERING AND BUILDING

STAGE 01 - ENGINEERING AND BUILDING

STAGE 01 - ENGINEERING AND BUILDING

STAGE 02 - INSTALATION OF EQUIPMENT

STAGE 03 - TRIAL OUT AND START UP

STAGE 03 - TRIAL OUT AND START UP

PROJECT SCHEDULE TO IMPLEMENTATION

							F	PR	0	JE	С	T S	sc	H	E	DI	JL	E																	
	J	AN	1	FE	٧		MA	٩R			AP	R	Τ	М	AY	'	J	UN	1	 JUI	_	Τ	AG	iO	SE	P	Τ	0	ст	Τ	N	ov	٦	DE	С
STAGE 01																																			
Kick off meeting																																\square			
Executive project																																			
Purchase orders of materials																																			
Prepare the area to contruction																																			
Building construction																																			
STAGE 02																																			
Pipe and Electrical installation																																			
Receiving the equipment on site																																			
Equipament Installation																																			
STAGE 03																																			
Trial out of equipment																																			
Warm up the plant																																			
Start up the plat																																			

OPERATION PLANT

SUPERVISORY SYSTEM

EXTRACTION SYSTEM ASH AND FEEDING SYSTEM

AIR SYSTEM PROCESS AND CONTROL ROOM

OPERATION PLANT

	RTINS Hidrogênio (%)	4,97
Part a	PRAXAIR INC Oxigênio (%)	2,22
anne	Nitrogênio (%)	60,8
A CLARKE A CLARKER AND A C	Monóxido de Carbono (%)	10,14
	Dióxido de Carbono (%)	13
	Metano (%)	5,41
	Etano (%)	0,25
	Etileno (%)	2,27
LiPote +10 LiPote +20 LiPote +20 LiPote +20 N 95.2	Propano (%)	0,79
9 56.1 ar 51.4 +F 2010 15.4 +F 2010	iso-Butano (%)	< 0,01
	n-Butano (%)	0,09
	Iso-Pentano (%)	< 0,01
	n-Pentano (%)	< 0,01
SUPERVISORY	n-Hexano (%)	< 0,01
/STEM	Massa Molar (kg/kmol)	29,042
	PCI real a 20°C (kcal/m ³)	1358
	° FLARE	

Reduces> 90% by weight and about> 95% of the waste volume;

There is no formation of leachate;

Elimination of CH4 emissions;

Efficiency above 75%;

Production of fuel gas can be fed away from the site of generation;

There is no formation of NOx and SOx;

National Technology and Low Costs Implementation and Operation;

There is no formation of dioxins and furans; (gasification works with very low oxygen rate in the reactor. Because of this, there is no formation of these pollutants)

PCDF - Policloradodibenzo furano

PCDD - Policloradodibenzo dioxina

dioxins and furans

CETESB

COMPANHIA DE TECNOLOGIA DE SANEAMENTO AMBIENTAL

A Vale Soluções em Energia S/A Rodovia Presidente Dutra km 138 B. Eugênio de Melo - CEP 12247-004 São José dos Campos – SP

A/C Sr. Hugo José Teixeira Moura. Diretor do CTE - Centro Tecnológico de Energia

N/CÓD.: CLT/015/2009 DATA: 14/01/2009

	Dadaa	14 de Outubro de 2009					
	Dados	1ª Coleta	2ª Coleta				
Horário		2: 31 às 3:50	4:00 às 5:30				
Temperatura (°C	2)	136,25	137,25				
Umidade (% vol	.)	8,27	8,04				
Velocidade (m/n	nin)	1.164,73	1.160,65				
Vazão (m³/h)*		548,87	546,95				
Vazão (Nm³/h)	**	311,62	310,53				
Ácido	Concentração (mg/Nm³)**	ND	ND				
Clorídrico (HCl)	Taxa de Emissão (kg/h)	ND	ND				
Class (Ch)	Concentração (mg/Nm³)**	ND	ND				
Cloro (Cl2)	Taxa de Emissão (kg/h)	ND	ND				
Ácido	Concentração (mg/Nm³)**	ND	ND				
Fluorídrico (HF)	Taxa de Emissão (kg/h)	ND	ND				
	CO ₂ (%Vol.)**	11,2	11,8				
Análise dos	O ₂ (%Vol.)**	0,0	0,0				
Combustão	CO (%Vol.)**	15,2	14,4				
	N2 (%Vol.)**	73,6	73,8				

(*) Nas condições da chaminé.

(**) Nas condições normais de temperatura e pressão (CNTP) - base seca (0°C e 1 atm). (ND) Abaixo do Limite de Detecção

Dioxinas e Furanos Expresso como Toxicidade Equivalente a 2,3,7,8 - TCDD										
Total PCDDs +	C (ng/m^3) N **	1,13E-03	3,38E-04							
PCDFs como	TE (μ g/h)	3,53E-04	1,06E-04							
2,3,7,8-TCDD (*)										

(*) Nas condições da chaminé

(**) Nas condições normais de temperatura e pressão (CNTP) - base seca (0°C e 1 atm)

(***) Base Seca , C – Concentração, TE - Taxa de emissão , PCDDs - Dibenzo-para-dioxinas policloradas

PCDFs - Dibenzofuranos policloradosFET - Fator de Equivalência de Toxicidade da substância para expressá-la como 2,3,7,8 - tetraclorodibenzeno p-dioxina (2,3,7,8 -TCDD), especificados pela NATO/CCMS - North Atlantic Treaty Organization's - Committee on Challenges of Modern Society

	PARECER TÉCNICO	PASTACET	ESB 8 8		
CETESB	COMPANHIA AMBIENTAL DO ESTADO DE SĂ Av. Prof. Frederico Hermann Jr., 345 - CEP 05459-800 - São Paulo CNPJ 43.776.491/0001-70 - Insc. Est. 109.091.375-118 - Insc. Munic. 8 Site: www.cetesb.sp.gov.br	O PAULO - SP 030.313-7	Data: 06.01.2016		
10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
INTERESSADO:	CARBOGÁS Energia				
REFERÊNCIA: ASSUNTO:	PA Nº 471/08 Solicitação de Autorização de Ensaios de G	aseificação de B	liomassa		

COMPARISON OF THE RESULTS OBTAINED IN THE BURNER FIREPLACE CORRECTED TO 7% OF O2 - 09/05/16

Amostragem	Parâmetros	Concent 7 % de O ₂ na Resolu	trações corr conforme es ução CONAM	igidas a tabelecido MA nº 316	Limites de Emissão (valores expressos
		1ª Coleta	2ª Coleta	3ª Coleta	em mg/Nm [®] , base seca, 7% de O ₂)
Material Particulado (MP)	Material Particulado (mg/Nm ³ @ 7% O ₂)	45,82	40,10	39,94	70
e Oxidos de Enxofre (SOx)	Óxidos de Enxofre - SO _x (SO ₂ +SO ₃ Expresso como SO ₂) (mg/Nm ³ @ 7% O ₂)	96,30	103,33	113,40	280
NOx Expresso	NOx - 1º Balão / 4º Balão / 7º Balão	152,51	125,95	116,56	
Como NO ₂ (mg/Nm ³ @ 7%	NOx - 2° Balão / 5° Balão / 8° Balão	179,79	140,83	166,11	570
O ₂)	NOx - 3º Balão / 6º Balão / 9º Balão	51,16	33,41	167,22	
Ácido	Cloro mais Ácido Clorídrico Expresso como HCl (mg/Nm ³ @ 7% O ₂)	8,32	9,37	11,86	80
Cloridido e Cloro	Cloro mais Ácido Clorídrico Expresso como HCl (kg/h)	0,0029	0,0031	0,0031 0,0051 1,8	
Ácido Fluorídrico (HF)	Fluoreto Total (Fs + Fg expresso como HF) (mg/Nm ³ @ 7% O ₂)	4,87	4,31	1,31	5
Hidrocarbo- netos Totais HCT	Hidrocarbonetos Totais – HCT (expresso como metano e não metano) (mg/Nm ³ @ 7% O ₂)	2,49	1,49	3,00	-
	Material Particulado (mg/Nm ³ a 7% O ₂)	21,20	28,00	48,61	70
	Cd + Hg + TI (mg/Nm ³ @ 7% O ₂)	0,0054	0,0190	0,0079	0,28
Material Particulado (MP) e Metais	As + Co + Ni + Te (⁴) + Se (⁴) (mg/Nm ³ @ 7% O ₂)	0,01	0,02	0,02	1,4
	$Sb + Pb + Cr + Cn (^{4}) + Cu + Sn(^{4}) + Mn + Pt(^{4}) + Pd(^{4}) + Rh(^{4}) + V (mg/Nm^{3} @ 7% O_{2})$	0,43	0,23	0,21	7,0
D&F	Dioxinas & Furanos (ng/Nm ³ @ 7% O ₂)	0,04	0,01	0,01	0,5 ng/Nm ³
Monóxido de Carbono	Monóxido de Carbono (ppm @ 7% O ₂)	31,5	5,7	12,3	100 ppm

Davidson Vale 08/22

COMPARISON OF THE RESULTS OBTAINED IN THE BURNER FIREPLACE CORRECTED TO 11% OF O2 - 09/05/16

	P 1 1 1 1	Conce 11 % de O ₂ Resol	ntrações corriç conforme esta ução SMA Nº 7	gidas a belecido na 9/2009	Limites de Emissão Resolução SMA № 79/2009 (valores expressos em mg/Nm³, base seca, 11% de O ₂)				
Amostragem	Parametros	1ª Coleta	2ª Coleta	3ª Coleta	Valor médio diário	Valores n 30 mi 97% do	nédios de nutos 100% do		
	Material Particulado (mg/Nm ³ @ 11% O ₂)	15,15	20,00	34,72	10	10	30		
Material Particulado	Cd + TI (mg/Nm ³ @ 11% O ₂)	0,003	0,003	0,003	0,05	0,05	0,05		
(MP) e Metais	Hg (mg/Nm ³ @ 11% O ₂)	0,0011	0,0106	0,0028	0,05	0,05	0,05		
	Pb + As + Co + Ni + Cr + Mn + Sb + Cu + V (mg/Nm ³ @ 11% O ₂)	0,312	0,175	0,162	0,5	0,5	0,5		
D&F	Dioxinas & Furanos (ng/Nm ³ @ 11% O ₂)	0,0262	0,0089	0,0083	0,1	0,1	0,1		
Monóxido de Carbono	Monóxido de Carbono (mg/Nm ³ @ 11% O ₂)	28,1 ⁽¹⁾	5,1 ⁽²⁾	11,0 ⁽³⁾	50	150 ⁽⁴⁾	100		
Hidrocarbonetos Totais HCT	Hidrocarbonetos Totais – HCT (expresso como metano e não metano) (mg/Nm ³ @ 11% O ₂)	1,8	1,1	2,1	10	10	20		
Ácido Cloridrico e Cloro	Cloro mais Ácido Clorídrico Expresso como HCl (mg/Nm ³ @ 11% O ₂)	5,94	6,69	8,47	10	10	60		
	NOx - 1º Balão / 4º Balão / 7º Balão	108,93	89,96	83,26					
NOx Expresso Como NO ₂ (mg/Nm ³ @ 11% O ₂)	NOx - 2º Balão / 5º Balão / 8º Balão	128,42	128,42 100,60		200	200	400		
	NOx - 3º Balão / 6º Balão / 9º Balão	36,54	23,87	119,44					
Ácido Fluorídrico (HF)	Fluoreto Total (Fs + Fg expresso como HF) (mg/Nm ³ @ 11% O ₂)	3,47	3,08	0,94	1	2	4		
Material Particulado (MP) e	Material Particulado (mg/Nm ³ @ 11% O ₂)	32,73	28,64	28,53	10	10	30		
Oxidos de Enxofre (SOx)	Óxidos de Enxofre - SO _x (SO ₂ +SO ₃ Expresso como SO ₂) (mg/Nm ³ @ 11% O ₂)	68,78	73,81	81,00	50	50	200		

Quality gas with continuous work

SGS

Environmental Agency

4. CONSIDERAÇÕES FINAIS

Os testes nessa instalação piloto gerarão informações para a Carbogás, para esta Agência Ambiental e outros interessados no processo de gaseificação. Caso os resultados sejam adequados cod segrvos 17/08/2006

a Carbogás terá condições de prosseguir na instalação das unidades em tamanho real e cada uma delas deverá ser objeto de processo de licenciamento, considerando seu porte, impactos, localização, atendendo todos os quesitos exigidos pela legislação ambiental aplicável. Logicamente espera-se que esses testes forneçam dados para uma avaliação técnica, bem como econômico-financeira, possibilitando esclarecer aspectos sobre os possíveis retornos que uma unidade como esta poderá ter e que poderão comprovar sua viabilidade econômica. As alternativas de tratamento de resíduos sólidos urbanos tem que apresentar sustentabilidade ambiental, mas a ausência de uma sustentabilidade econômica não permitirá sua estabilidade no tempo, o que não é interessante nem para o empreendedor e nem para os gestores ambientais envolvidos.

Environmental Agency

GOVERNO DO ESTADO DE SÃO PAULO SECRETARIA DO MEIO AMBIENTE CETERB - COMPANHIA AMBIENTAL DO ESTADO DE SÃO PAULO	19	Hora Intelo Término
AUTO DE INSPEÇÃO	12	Nº 1688182
IDENTIFICAÇÃO DA PESSOA FÍSICA OU JURÍDICA		
CARBOGAS LIPA		
OBJETIVO DA INSPEÇÃO		
ROMINISTRATIVA Nº 00471/08	, A	PASTA
CONSTATAÇÕES	_	
NESTA SATA VISTORIAMUS AS INSTALA. DA FIRMA A QUAL ENCONTRA SA B TO.	H FU	NOUSTRIA.S NCIONAMENT
RECUPERAÇÃO DE ENERGIA, OS RE DEENPAMANTO DOS PROXIMOS TI	A UNI ELATON ELATON	DADE DE RICS E D DEVERAD
SER ENERMINHADUS à CETESB COM ANTRCEDÈNCIA,	30 0.	ins pe
AGENTE CREDENCIADO Undexe CETESB Nome AGENCIA AMBIENTAL DO ABC Verencenterter 2130 Rua dos Vianas, 625-Baeta Neves ELENCIA 6000-S.B. do Campo-SP Dota Nome Roberto Infresta In	2	Apr-
		Poster Natural

MARINE & OFFSHORE DIVISION RIO DE JANEIRO TECHNICAL CENTER

STATEMENT OF TECHNICAL TECHNOLOGY QUALIFICATION

BV Statement no. AUD/21/127 Rev.0 ENG

GAS PLANT SCALE-UP PROJECT - Thermal Power 10 Gcal/h

Based on the documentation made available by CARBOGAS ENERGIA LTDA and also on the Technology Readiness Assessment carried out by Bureau Veritas, it has been anticipated that no particular showstopper to the TRL (Technology Readiness Levels) 7,3 to 8,3 achievement were found for the GAS PLANT SCALE-UP PROJECT - Thermal Power 10 Gcal/h.

TRL 8 – system complete and qualified

The technology has been proven to work in its final form and under expected conditions. In almost all cases, this TRL represents the end of true system development (e.g., complete and fully integrated technology has been initiated at full-scale demonstration including start-up, testing, and evaluation of the system using actual flue gas composition).

In order to validate the qualification, CARBOGAS ENERGIA LTDA provided Bureau Veritas with design development technical documents which were taken into account in comments / recommendations as per below mentioned Technology Assessment Report. The design documentation verification and the attendance to the tests performed at CARBOGAS' plant, support to Bureau Veritas the issuance of the present Statement of Qualification for the new technology, regarding below aspects.

- ✓ Input raw material handling
- ✓ Gasification reactor
- ✓ Product gas separation and cleaning
- ✓ Integrated operation

The scope of Technology Readiness Assessment was developed on the basis of the requirements of:

 ABNT NBR ISO 16290:2015 - Space systems – Definition of the Technology Readiness Levels (TRL) and their criteria of assessment

The results of the process, which are summarized in the technical report no. AUD/21/041 Rev.B attached to this Statement, are satisfactory, considering the comments, remarks and limits stated on its text.

Rio de Janeiro, September 17th, 2021

Leonardo Sant'Anna do Nascimento Rio de Janeiro Technical Center Executive Manager

ENVIROMENTAL CERTIFICATIONS

Any Question?

Let us Know, Thanks!!!

SHANE HENDERSON 1+407-341-6005

Waste Engineer Davidson Vale +55(47)99953-0452

Davidson Vale 08/22